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Abstract
A comparison of orthogonal and non-orthogonal localized wavefunctions for
Si in the diamond structure is carried out. We have used a real-space
grid formulation of density functional theory in combination with the local
density approximation for exchange and correlation to describe the energetics.
Maximally localized wavefunctions, obtained from the extended Kohn–Sham
states with and without an orthogonality constraint, are calculated and it is
found that the wavefunctions calculated without any orthogonality constraint
are the most localized. When solving directly for localized states, by applying
a localization constraint to each electronic state, we find that there is a large
difference between orthogonal and non-orthogonal states: when the localization
region is a sphere with a radius of 3.0 Å, we get an error in the total energy due
to the localization constraint of 0.2 and 2.7 eV/atom for non-orthogonal and
orthogonal wavefunctions respectively.

1. Introduction

The study of large and complex systems with ab initio electronic structure methods is today
done routinely for systems containing of the order of 102 atoms [1–3]. The desire to treat even
larger systems has boosted interest in the development of so-called order-N methods, where
the computational cost, in terms of time and memory, scales linearly with the number of atoms
or electrons (for a recent review see [4]). A key ingredient in these methods is exploiting
the locality of chemical binding [5]. In a wavefunction-based approach this means that the
wavefunctions are localized in space and therefore only interact with a fixed number of other
electronic states, this number being independent of system size. Localized wavefunctions are
appealing also from a conceptual point of view: each state can be ascribed to a specific position
in space, such as a bond between atoms or a lone pair. The fact that the wavefunctions depend
only on the local chemistry makes them transferable from one system to a similar one, which
could be useful in many situations. For example, localized orbitals could serve as a buffer at
the interface between a classical model and a quantum mechanical model [6].
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Recently, non-orthogonal wavefunctions have attracted much attention due to their
better transferability and more localized nature [7–12]. In this paper we compare localized
wavefunctions for silicon in the diamond structure with and without an orthogonality constraint.

Solving directly for localized wavefunctions by forcing the wavefunctions to be zero
outside a localization region introduces an error in the total energy. We address the question of
how this error decays with localization region size, and show that it decays much faster for non-
orthogonal wavefunctions than for orthogonal wavefunctions. This effect of non-orthogonality
has been known for many years, but how large the effect is, is not well known.

The paper is organized as follows: we first introduce a generalized Kohn–Sham functional
[10, 13–15], which depends on a set of non-orthogonal wavefunctions. This functional can
be minimized without any orthogonality constraint, in contrast to the original Kohn–Sham
functional [16, 17]. In section 3, we describe the details of our real-space grid calculation
for Si. Section 4 compares the results of calculations with localized wavefunctions with and
without an orthogonality constraint. In section 5, a number of physical quantities, such as
the lattice constant and the bulk modulus, are calculated as a function of localization region
size. Finally, the efficiency of the method developed is discussed, as well as the possibility of
obtaining true order-N scaling in DFT calculations by using non-orthogonal wavefunctions. In
the appendix, we show how localized non-orthogonal wavefunctions can be obtained indirectly
from a given set of Kohn–Sham wavefunctions: we present an approach to transforming Kohn–
Sham wavefunctions, extended over all atoms, into non-orthogonal wavefunctions maximally
localized in space.

2. Energy functionals

Using density functional theory [16], the electronic energy of a spin unpolarized system can be
expressed in terms of a set of doubly occupied wavefunctions {ψi} that minimize the functional:

E[{ψi}] = 2
∑
i

∫
d�rψi

(
− 1

2
∇2

)
ψi +

∫
d�rvextn + F [n] (1)

under the constraint that the wavefunctions are orthonormal (
∫

d�rψiψj = δij ). In this equation
we assume that the occupied states are separated from the unoccupied states by a bandgap, as
is the case for bulk silicon, which is our test case in this paper. The first term in equation (1)
is the kinetic energy of a non-interacting electron gas with electron density n = 2

∑
i ψ

2
i [17].

The second term is the external energy, and F [n] is a universal density functional that includes
the Hartree energy, and the exchange and correlation energy:

F [n] = 1

2

∫
d�r
∫

d�r ′ n(�r)n(�r
′)

|�r ′ − �r| + Exc[n] (2)

The external potential vext contains the Coulomb potential from the ions. The Kohn–Sham
wavefunctions are the solutions to the Kohn–Sham equation:

−1

2
∇2ψi + vextψi +

∂F

∂n
ψi = εiψi (3)

which must be solved self-consistently.
The ψi will in general extend over the whole system. However, any linear combination

of the Kohn–Sham wavefunctions, such as:

φi =
∑
j

Uijψj , (4)

where U is a unitary matrix, will also minimize equation (1). A unitary matrix ensures that
the φi form an orthonormal set of wavefunctions. The extra degrees of freedom available to us
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by choosing U as any unitary matrix allows us to localize the wavefunctions [18–20]. As an
example, we can choose U so that we get maximally localized Wannier functions (WF). The
solid line in figure 1 shows what the wavefunctions will look like for bulk Si. This WF has been
generated with the method described in the appendix. Each wavefunction has its WF centre
(WFC) at the middle of a Si–Si bond, and the figure shows the weight of the wavefunction as
a function of the distance from the bond-centre.

It can be seen that the Wannier function is localized and its weight is mainly on the two
neighbouring Si atoms approximately 1 Å away. However, we still see some structure in the
tail of the wavefunction. This structure is present because of the orthogonality constraint. The
position of the minima in φ2

i correspond to the positions where φi must have nodes in order to
be orthogonal to the neighbouring orbitals.
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Figure 1. (a) Spherical average of 4πr2φ2
i as a function of the distance from the corresponing

WFC. Solid line: orthogonal wavefunction. Dashed line: non-orthogonal wavefunction. Both
functions integrate to one electron. (b) Square of the wavefunctions on a logarithmic scale.

If we allow U to be any non-singular matrix, then we have more degrees of freedom, which,
in principle, can lead to more localized wavefunctions. These wavefunctions will, in general,
not be orthogonal to each other. One such maximally localized non-orthogonal wavefunction
for Si is also shown in figure 1 (dashed line). Clearly this function decays faster than the solid
line. The way we choose U to get maximally localized non-orthogonal wavefunctions is also
described in the appendix.

2.1. A generalized Kohn–Sham functional

If we insert the transformation in equation (4) into equation (1) we obtain [10, 13–15]:

E[{φi}] = 2
∑
ij

S−1
ij

∫
d�rφi

(
− 1

2
∇2

)
φj +

∫
d�rvextn + F [n] (5)

where Sij = (UUT)ij = ∫
d�rφiφj is the overlap matrix. The density is:

n = 2
∑
ij

S−1
ij φiφj . (6)
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With this functional we can work with non-orthogonal wavefunctions. Notice that we no
longer have any orthogonality constraint to fulfill.

The electronic gradient needed for the minimization of the energy functional in equation (5)
is:

Gi = 1/2
δE

δφi
=
∑
j

S−1
ij Ĥφj −

∑
j

(S−1HS−1)ijφj (7)

where Hij = ∫
d�rφiĤφj and Ĥ = − 1

2∇2 + vext + δF/δn. At the electronic groundstate we
must have for all points in space thatGi = 0. By multiplyingGi ′ by Sii ′ and summing over i ′

we obtain:

G′
i = Ĥφi −

∑
j

(HS−1)ijφj . (8)

We see that Gi = 0 is equivalent to G′
i = 0. Using the function G′

i as the electronic gradient
in the minimization procedure was found by Fattebert et al [12] to give faster convergence.

We shall also be working with the functional proposed by Ordejón et al [21] and Mauri
et al [22]. When minimized, this functional will automatically give orthogonal wavefunctions
(OWF), without applying any explicit orthogonality constraints. The OWF functional looks
like the functional in equation (5) with S−1

ij replaced by 2δij − Sij

E[{φi}] = 2
∑
ij

(2δij − Sij )

∫
d�rφi

(
− 1

2
∇2

)
φj +

∫
d�rvextn + F [n]. (9)

The same replacement should be made in equation (6) for the density2.

n = 2
∑
ij

(2δij − Sij )φiφj . (10)

3. Bulk silicon

We have minimized the energy functional in equation (5) with respect to theφi for a system of 64
bulk Si atoms in a cubic box with periodic boundary conditions and Brillouin zone sampling
limited to the ��-point. The local density approximation for the exchange and correlation
energy [23,24] and a local pseudopotential for Si3 [25] are used. All wavefunctions, potentials
and electron densities are described on grids in real space with 32 × 32 × 32 points. The grid
spacing is h � 0.34 Å, equivalent to a planewave cut-off of 24 Ry (Ecut = (π/h)2/2). A finite
difference formula is used for the Laplacian operator, ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. For
the x-component, the formula looks as follows [26]:

∂2ψ(x)

∂x2
= 1

h2

2∑
n=−2

cnψ(x + nh) (11)

c0 = −5

2
c±1 = 4

3
c±2 = − 1

12
(12)

with similar equations for ∂2/∂y2 and ∂2/∂z2. An iterative technique is used to find the
groundstate: the electronic gradient is preconditioned [27] and then used to update the
wavefunctions within the DIIS scheme [28] (direct inversion in iterative subspace). The density

2 For the OWF functional, we have shifted the potential down by 3 Ry, so that all eigenvalues are negative. See [21]
and [22] for details.
3 The α parameter of the Appelbaum–Hamann pseudopotential has been multiplied by a factor of 1.17, in order to
achieve better results for the lattice constant.



Localized non-orthogonal orbitals in silicon 5735

is updated by simply mixing the old density with the new density in a ratio of approximately
2:1. The Hartree potential and Hartree energy is found using Fourier transforms.

Preconditioning of the electronic gradient considerably improves the convergence of the
total energy. Preconditioning is done as in [27], only slightly modified. We define the
‘smearing’ operator P̂ as:

P̂ f (�r) = αf (�r) +
1 − α

6

∑
��
f (�r + ��) (13)

where the sum runs over the six nearest neighbour grid points. The preconditioning operator
that we apply to the electronic gradient is defined as K̂ = P̂ n, where n is between 5 and 7.
With α = 0.5 this preconditioner is identical to that in [27]. However, for our system, we
achieve better results with α = 0.8.

4. Localized wavefunctions

The dashed line in figure 1 shows that it is possible to describe the electronic structure of
bulk silicon in terms of highly localized non-orthogonal wavefunctions, by transforming the
Kohn–Sham wavefunctions into Wannier-like functions. We now wish to calculate the φi
directly, without having to calculate the extended Kohn–Sham wavefunctions first. We do this
by minimizing the energy functional under the constraint that each wavefunction should be
zero outside a given localization region. Since there are two bonds and two doubly occupied
electronic states for each Si atom, it is natural to centre each wavefunction or localization
region on the midpoint of the Si–Si bonds. We let each localization region be a sphere with
radius rcut. Any discontinuities in the wavefunctions at the border of the localization region
will give a large contribution to the kinetic energy. Therefore, the wavefunctions will decay
smoothly to zero at the border when the energy is minimized.
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Figure 2. Error in the total energy as a function of localization region radius. Triangles: orthogonal
wavefunctions (OWF functional). Circles: non-orthogonal wavefunctions andGi = 0. Diamonds:
non-orthogonal wavefunctions and G′

i = 0. Squares: results from [29] with the OWF functional.
(In [29] the localization region is a cube and not a sphere—we have converted the cube length to
a sphere radius so that the volumes are the same.)
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Putting a constraint on the wavefunctions introduces an error, �E, into the calculation
of the energy relative to the calculation without any constraints. Figure 1 suggests that the
error should go to zero with increasing localization region. Since our energy functional in
equation (5) is variational we will have �E > 0.

We will now calculate the energy using two different functionals: the non-orthogonal
wavefunction (NOWF) functional in equation (5) and the OWF functional of Ordejón et al [21]
and Mauri et al [22] in equation (9).

4.1. Non-orthogonal wavefunctions

In figure 2 we have plotted the error for non-orthogonal wavefunctions as a function of rcut

(circles). As expected, the error goes to zero as the localization region increases in size. The
energies are obtained by solving, self-consistently, the equations Gi = 0 (or δE/δφi = 0)
for each i. For each electronic state i, the equation must hold at each gridpoint inside the
localization region of state i. This procedure gives us the minimum of the functional in
equation (5) under the localization constraint.

When we have a localization constraint for each wavefunction, Gi = 0 is no longer
equivalent to G′

i = 0. If we solve G′
i = 0, as was done in the work of Fattebert et al [12],

instead of δE/δφi = 0, we get an energy slightly higher than the minimum energy (we
will denote this type of calculation by NOWF2). These results are also shown in figure 2
(diamonds). We shall return to this small energy difference later when we look at physical
quantities such as lattice constants and phonon frequencies.

4.2. Orthogonal wavefunctions

Looking at figure 1, one would expect that the localization error would be bigger for
orthogonal wavefunctions, since they decay more slowly. In order to find out if this
is the case, we also calculate localized orthogonal (or nearly orthogonal) wavefunctions
using the density functional proposed by Ordejón et al [21] and Mauri et al [22] (OWF,
equation (9)). When minimized with a localization constraint, the OWF functional will give
approximately orthogonal wavefunctions. The reason that we do not obtain exactly orthogonal
wavefunctions is that strict localization is not compatible with orthogonality. Exactly how
close to orthogonality the wavefunctions are can be illustrated by looking at the quantity
�N = ∫

d�rn − N = −2Tr{(S − 1)2} (N = 256 electrons), which will be zero without a
localization constraint. We get�N/N = −4×10−4 for rcut = 3.0 Å, in good agreement with
the work of Fernández et al [29].

Figure 2 shows the error for orthogonal wavefunctions (triangles) as well as the results of
Fernández et al [29] for a similar calculation with orthogonal wavefunctions (squares). We
see that our calculations with the OWF functional are in good agreement with those from [29]
(see also [30] and [31]). We also see that the error goes much faster to zero when the
wavefunctions are allowed to be non-orthogonal. If, for example, we accept an error in the
total energy of 0.1 eV/atom (the error in energy differences and other physical quantities
of interest are expected to be smaller due to error cancellations), then we need a localization
region with a radius of approximately 3.5 and 7 Å in the case of non-orthogonal and orthogonal
wavefunctions respectively. This amounts to a difference of a factor of 8 in the amount of real
space volume needed to represent each wavefunction.
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5. Physical quantities

Total energies are not interesting in themselves. We have therefore calculated several physical
properties for silicon: the lattice constant (a), the bulk modulus (B), and the frequency of
a zone-centre transverse optical phonon (ωTO). We will now look at how these quantities
converge to the values calculated without any localization constraint, as a function of rcut.

It should be noted that for quantitatively accurate LDA results an all-electron calculation
or an accurate non-local pseudopotential would be required. For this reason we do not compare
our results with other LDA calculations, although the agreement is good.
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Figure 3. (a) Lattice constant. (b) Bulk modulus. (c) Frequency of a zone-centre transverse
optical phonon. Triangles: orthogonal wavefunctions (OWF functional). Circles: non-orthogonal
wavefunctions and Gi = 0. Diamonds: non-orthogonal wavefunctions and G′

i = 0. The dashed
lines show the exact results with no localization constraints.

Figure 3 shows results for a, B, and ωTO using: orthogonal wavefunctions (OWF
functional, triangles), non-orthogonal wavefunctions andGi = 0 (circles), and non-orthogonal
wavefunctions and G′

i = 0 (diamonds). As observed for the convergence of the total energy
with localization region size, we find also for the convergence of physical quantities thatGi = 0
and G′

i = 0 give almost identical result (NOWF and NOWF2). As mentioned above, for a
NOWF2 calculation, we do not obtain the minimum energy, but this small error in the total
energy is almost completely cancelled out when we calculate energy differences.

One can also observe that the convergence is much faster with non-orthogonal
wavefunctions than with orthogonal wavefunctions. As an example, a, B, and ωTO are all
converged to within ∼1% of their exact values, with no localization constraint, at a radius of
rcut � 3.0–3.5 Å for non-orthogonal wavefunctions. For orthogonal wavefunctions, it seems
that a radius of at least 5.0 Å would be needed for a calculation of the same quality.

6. Efficiency

With the functional in equation (5), we need to invert the overlap matrix at each iteration. This
requires, in principle, of the order of N3 operations. However, this part of the calculation is
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Table 1. Lattice constant (a), bulk modulus (B), and frequency of a zone-centre transverse optical
phonon (ωTO). Calculations for different values of rcut using the NOWF functional. The last row
gives the results with no localization constraints.

rcut �E a B ωTO

(Å) (eV/atom) (Å) (GPa) (cm−1)
2.0 3.0 5.99 62.1 511
2.5 0.75 5.59 83.6 532
3.0 0.23 5.48 93.3 535
3.5a 0.072 5.45 96.9 533
– 0.0 5.43 98.0 527

a Results for rcut = 3.5 Å are obtained from a NOWF2 calculation.

a small part of the total calculation, and we could reduce the scaling of the matrix inversion
by taking advantage of the fact that the overlap matrix is sparse. In practice each iteration
is therefore an order-N operation, as it is for the OWF functional, where S−1 is not needed.
Unfortunately, both equation (5) and the OWF functional are ill conditioned when a localization
constraint is applied, and the number of iterations needed to obtain the groundstate increases
drastically with the size of the localization region. This is a well-known problem of many order-
N schemes [4,32,33]. The reason is that the introduction of a localization constraint destroys
the invariance of the energy with respect to a unitary transformation of the wavefunctions [4].
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Figure 4. Convergence of the electronic gradient with iteration number. Dotted line: calculation
with no constraints. Dashed line: NOWF calculation. Solid lines: NOWF2 calculations with
rcut = 3.0 and 3.5 Å. Four old wavefunctions and gradients are used in the DIIS update.

In order to see how fast or how slow the energy converges, we make a small random
displacement of all atoms (maximum displacement: 0.05 Å), and then start the calculation
from the fully-converged wavefunctions for the perfect bulk structure. Figure 4 shows how
the norm of the electronic gradient converges to zero as a function of the number of iterations.
The norm is defined as:√

2

N

∑
i

∫
d�rG2

i . (14)
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The dotted line shows that without any localization constraints, the convergence is quite fast.
In order to converge the energy to an accuracy of 10−5 eV/atom, 21 iterations are needed.

The dashed line shows the results of a NOWF calculation with a localization region radius
of 3.0 Å. In order to reach the same accuracy 231 iterations were needed. When increasing
rcut to 3.5 Å we were not able to converge the energy. This clearly shows that this scheme is
not practical for electronic structure calculations.

The two solid lines show the results for the case where G′
i is used for the electronic

gradient (NOWF2). For this case 59 and 105 iterations are required for rcut = 3.0 and 3.5
Å respectively. If we compare the timings for one iteration for a NOWF2 calculation and a
calculation with no constraints and extended wavefunctions, we find that for rcut = 3.0 the
NOWF2 calculation is faster by a factor of three and for rcut = 3.5 the two methods are equally
fast. Furthermore, a NOWF2 calculation with rcut = 3.5 uses only a third of the memory that
is required to do a standard calculation with extended wavefunctions. It should be noted that
these numbers are for only 64 Si atoms, where the linear scaling of time and memory usage
has not yet been reached.

One problem with the NOWF2 scheme is that the Hellmann–Feynman forces are not exact:
the force acting on atom number I at position �RI is:

�FI = − dE

d �RI
= −

∑
i

∫
d�r δE
δφi

dφi
d �RI

− ∂E

∂ �RI
. (15)

In this equation we cannot throw away the first term, as is usually done, because δE/δφi is not
zero (in the NOWF2 scheme, G′

i = 0 is solved and not δE/δφi = 0).

7. Conclusions

Our results clearly show the advantages of working with non-orthogonal wavefunctions rather
than orthogonal wavefunctions. We have shown that non-orthogonal wavefunctions can be
localized considerably more than orthogonal wavefunctions, without affecting the physical
results. Also the low memory consumption allows one to use more memory-expensive methods
such as DIIS and wavefunction extrapolations [13].

For an order-N method to be faster than a standard method with scaling between order-N2

and order-N3, the number of atoms must be larger than some critical value. This critical number
of atoms is proportional to the volume of the localization region. It is therefore essential that
an efficient order-N scheme uses non-orthogonal wavefunctions.

However, there are a number of problems and questions that need to be solved and answered
before this method can be used routinely: for example, how to calculate accurate forces and
how to choose the localization regions for a dynamically evolving system.

Appendix

This appendix describes how we have obtained the localized wavefunctions shown in figure 1.
We start from the Kohn–Sham wavefunctions ψi , and then look for a transformation matrix U
that gives the most localized φi .

We first look at the situation where U must be unitary. For a periodic system, the optimal
U is found by maximizing the function [18–20]:

' =
∑
i

(∣∣∣∣
∫

d�rφ2
i ei2πx/L

∣∣∣∣
2

+

∣∣∣∣
∫

d�rφ2
i ei2πy/L

∣∣∣∣
2

+

∣∣∣∣
∫

d�rφ2
i ei2πz/L

∣∣∣∣
2
)
. (.1)
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If the the φi are spread out over the whole box (box length L), then the integrals with the
oscillating exponential functions will be small. On the other hand, if all φ2

i are delta-functions,
then ' will have its maximum value 3N/2, where N/2 is the number of electronic states.

The function ' can be written in a more compact form:

' =
∑
i

| �Zi |2 (.2)

where �Zi is a complex vector and �Q is a matrix of complex vectors:

�Zi =
∫

d�rφ2
i exp

(
i
2π

L
�r
)

= (U�QUT)ii (.3)

�Qmn =
∫

d�rψmψn exp

(
i
2π

L
�r
)
. (.4)

We have used the notation: exp(�v) = {exp(vx), exp(vy), exp(vz)}. Maximizing ' with
respect to the elements of U, while keeping U unitary, is done using the scheme of Edmiston
et al [34, 35], where U is built up from a series of 2 × 2 rotation matrices. This results in
Wannier functions with Wannier function centres (WFC’s):

�Ri = L

2π
Im{log �Zi} (.5)

positioned on the bonds between the Si atoms.
In order to find maximally localized non-orthogonal Wannier functions, we use the WFC’s

determined above5 and find the matrix U by minimizing the following function independently
for each i:

ωi =
∫

d�rp(�r − �Ri)φ2
i (.6)

under the constraint that φi should be normalized. The penalty function p(�r) must have a
minimum at r = 0. This will localize each φi around its WFC, �Ri . Inserting equation (4) into
equation (.6), we see that ωi depends only on the ith row of U, which we denote �ui :

ωi = (UP(i)UT)ii = �uT
i P(i)�ui (.7)

where:

P(i)mn =
∫

d�rψmp(�r − �Ri)ψn. (.8)

The minimum of ωi is obtained when �ui is equal to the normalized eigenvector corresponding
to the smallest eigenvalue of P(i). A natural choice, for a periodic system, for p(�r) is:

p(�r) =
∑

α=x,y,z

[
1 − cos

(
2π

L
rα

)]
(.9)

= 2π2

L2
r2 for r � L. (.10)

With this choice P(i)mn can easily be calculated from �Qmn:

P(i)mn = 3δmn − Re

{
�Qmn exp

(
−i

2π

L
�Ri
)}
. (.11)

5 One might envisage a procedure in which the �Ri and the non-orthogonal wavefunctions are simultaneously
optimized. However, since this paper has an exploratory character, we have not attempted to do so. Furthermore, in
bulk Si, symmetry dictates the WFC positions.
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